ПЛАЗМЕННЫЕ ВОЛНЫ В СВЕРХРЕШЕТКЕ НА ОСНОВЕ ГРАФЕНА В ПРИСУТСТВИИ СИЛЬНОГО СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ

С.Ю. Глазов¹, Н.Е. Мещерякова², А.А. Ковалев¹ ¹ Волгоградский государственный социально-педагогический университет ² Волгоградский Институт Бизнеса kovalev-sith@yandex.ru

В работе исследовано влияние сильного постоянного электрического поля на плазменные волны в сверхрешетке (СР) на основе графена на полосчатой подложке. Расчеты выполнены с использованием квантовой теории плазменных волн в приближении случайных фаз с учетом процессов переброса.

Графен и новые структуры на его основе привлекают исследователей благодаря своим замечательным электронным свойствам. В последнее время активно изучаются СР на основе графена. В [1] предложена модель СР на основе графена, образующаяся за счет периодической модуляции запрещенной зоны. Такая модуляция возможна в графене, осажденном на подложку из периодически чередующихся полосок, например, SiO₂ и SiC. Материал SiO₂ не влияет на зонную структуру графена, в то время как SiC способствует возникновению запрещенной зоны в спектре графена, т. е. образованию щелевой модификации графена. Слои SiC расположены таким образом, что его гексагональная кристаллическая решетка располагается под гексагональной решеткой графена. При этом в областях графенового слоя над слоями SiC образуется энергетическая щель в зонной структуре графена, равная 0,26 эВ.

Закон дисперсии носителей заряда в СР на основе графена на полосчатой подложке в одноминизонном приближении хорошо описывается следующим выражением:

$$\varepsilon(\vec{p}) = \Delta \left(f_1 + \sqrt{f_2^2 + f_3^2 (p_y d)^2} + \frac{f_4^2 (1 - \cos(p_x d))}{2\sqrt{f_2^2 + f_3^2 (p_y d)^2}} \right), \tag{1}$$

где Δ – полуширина запрещённой зоны щелевой модификации графена, p_x , p_y – компоненты квазиимпульса электрона, $d = d_1 + d_2$ – период СР, d_1 и d_2 – ширины полосок бесщелевого и щелевого графена, а коэффициенты f_i подбираются численно на основе непосредственного решения дисперсионного соотношения из [1] (здесь и далее \hbar =1).

На основе квантовой теории плазменных волн в приближении случайных фаз с учетом процессов переброса получено выражение для нахождения закона дисперсии плазменных волн в 2D электронном газе СР в присутствии сильного ($\Omega >> \Delta \, f_4^{\, 2} \, / \, f_2$) постоянного электрического поля

$$\frac{2\pi e^2}{\chi} \Pi(\vec{k},\omega) S(\vec{k}) = 1,$$

$$\Pi(\vec{k},\omega) = \sum_{\vec{p}} \frac{n_{\vec{p}+\vec{k}} - n_{\vec{p}}}{\varepsilon(p_y + k_y) - \varepsilon(p_y) - \omega},$$

$$\varepsilon(p_y) = \Delta \left(\sqrt{f_2^2 + f_3^2(p_y d)^2} + \frac{f_4^2}{2\sqrt{f_2^2 + f_3^2(p_y d)^2}} \right),$$
(2)

где $n_{\tilde{p}}$ – равновесная функция распределения, T – температура, χ – диэлектрическая проницаемость кристаллической решетки. Множитель $S(\vec{k})$ определяется потенциалом межэлектронного взаимодействия. В данной работе выбран модельный потенциал межэлектронного взаимодействия аналогично потенциалу в двумерном случае, и

$$S(k_{x},k_{y}) = 2d\sum_{n} \frac{1 - \cos(k_{x}d)}{(k_{x}d + 2\pi n)^{2}\sqrt{(k_{x}d + 2\pi n)^{2} + (k_{y}d)^{2}}}.$$
 (3)

При произвольных значениях \vec{k} сумма в (3) не выражается через табулированные функции. Однако при малых значениях $k (k_x, k_y << \pi/d)$ $S(\vec{k})$ ведет себя как $1/|\vec{k}|$.

В сверхрешетке на основе графена возможно бесстолкновительное затухание плазменных волн. В сильном статическом поле этот реализуется при выполнении условия

$$\omega/\Delta < f_3 k_x d . \tag{4}$$

Физический механизм затухания Ландау связан с поглощением (излучением) плазмона частицей. Закон сохранения энергии для этого процесса имеет вид $\varepsilon_n(p_y) - \varepsilon_m(p_y \pm k_y) = \mp \omega$. В нашем предельном случае индексы *n* и *m* снимаются (*n*=*m*=0).

По результатам численного анализа (2) построены графики зависимости $\omega(k_x)$ при T \approx 70 K, $\Delta/\Omega \approx 1$, $d = 10^{-6}$ см, $2\Delta = 0.26 eV$ (SiC). На рис. 1 приведены дисперсионные кривые для разных значений поверхностной плотности 2D электронного газа. Влияние сильного статического электрического поля приводит к характерной зависимости $\omega(k_x)$, с увеличением компоненты волнового вектора k_x частота плазменных колебаний уменьшается. Отметим, что при $n = 10^{11}$ см⁻² (график б) затухание Ландау отсутствует. В случае, когда $n = 5 \cdot 10^{10}$ см⁻² (график а) реализуется выполнение условия (4) при $k_x d \ge 1.5$, т.о. спектр плазменных колебаний, начиная с определенного значения волнового числа, сливается с одночастичным спектром.

УЧЕНЫЕ ЗАПИСКИ ФИЗИЧЕСКОГО ФАКУЛЬТЕТА 5, 135018 (2013)

Исследована зависимость $\omega(k_x)$ для разных соотношений ширин полосок бесщелевой и щелевой модификации графена. Увеличение ширины полоски щелевой модификации графена приводит к уменьшению частоты плазменных колебаний. Задавая определенную ширину полосок бесщелевой и щелевой модификации графена можно добиваться нужных частотных характеристик образца.

Рис.1. Дисперсионная зависимость $\omega(k_x)$, $d_1 = d_2$: *a*) $n = 5 \cdot 10^{10}$ см⁻², *b*) $n = 10^{11}$ см⁻².

Для использования одноминизонного приближения достаточно выполнения условий T < 70 K, $(4\hbar v_f)/(\Delta d) \le 1$, где $v_f \approx 10^8$ см/с – скорость Ферми в графене.

Настоящая задача решалась в пренебрежении столкновениями электронов с решеткой. Такое возможно, когда период плазменных колебаний мал по сравнению со временем свободного пробега электрона $\tau (\omega \tau >> 1)$. Для проявления штарковского квантования необходимо выполнение условия $\Omega \tau >> 1$. Два последних условия могут быть удовлетворены при $\tau \ge 10^{-12}$ с, что является легко выполнимым для графена и структур на его основе.

Работа поддержана грантом РФФИ № 13-02-97033 р_поволжье_а, проектом государственных заданий на научно-исследовательскую работу Министерства образования и науки РФ на 2013 год № 2.8298.2013.

ЛИТЕРАТУРА

1. Ратников П. В. // Письма в ЖЭТФ. 2009. Т.90. N.6. С.515.